Preliminary communication

Geminal alkylation in carbohydrate chemistry. Conversion of L-glutamic acid into gem-di-C-methyl carbohydrate derivatives, and synthesis of 6-chloro-9-(5,5-dimethylfuran-2-yl)purine

WALTER A. SZAREK, DOLATRAI M. VYAS, and LU-YU CHEN

Department of Chemistry, Queen's University, Kingston, Ontario K7L 3No (Canada)

(Received September 2nd, 1976; accepted for publication, November 8th, 1976)

During the past two decades, the synthetic chemistry of branched-chain sugars has developed very rapidly¹; many of these sugars have been found in antibiotics^{1a}, and some nucleoside derivatives² have exhibited biological activity. A few naturally occurring antibiotics contain components which belong to a special and rare class of branched-chain sugars, namely, that of *gem*-di-C-alkyl derivatives; these antibiotics include novobiocin³ and chlorobiocin, coumermycin A-1 (ref. 5) and coumermycin A-2 (ref. 6), antibiotic X-5108 (goldinomycin)⁷, mocimycin (kirromycin)⁸, and efrotomycin⁹. Recently, the synthesis of a nucleoside in which the carbohydrate moiety contains a *gem*-di-C-(hydroxymethyl) grouping was reported¹⁰. At the present time, there is a dearth of examples of the synthesis¹¹ of *gem*-di-C-alkyl carbohydrate derivatives. However, in recent years, several elegant synthetic methods for geminal alkylation at a carbonyl carbon atom have been developed¹²; these are of potential utility in the carbohydrate field. Here, we describe the conversion of L-glutamic acid into *gem*-di-C-methyl carbohydrate derivatives, and the synthesis, from one of them, of a nucleoside, namely, 6-chloro-9-(5,5-dimethylfuran-2-yl)purine (13).

The lactone alcohol 2 was prepared from L-glutamic acid (2-amino-2,3,4-trideoxy-L-glycero-pentaric acid; 1) by the method described by Taniguchi et al. ¹³, which involves deamination of the amino acid to give, after esterification, 2,3-dideoxy-D-glycero-pentaro-1,4-lactone 5-ethyl ester, which was reduced with sodium borohydride in ethanol to afford 2,3-dideoxy-D-glycero-pentono-1,4-lactone (2) (see Scheme 1). The hydroxyl group in 2 could be protected by conversion of 2 into the known ¹³ benzyl ether 4 or the tert-butyldimethyl-silyl ¹⁴ derivative 3. Compound 3 had b.p. $80^{\circ}/1.0$ torr and $[\alpha]_D^{23} +5.2^{\circ}$ (c 2.1, chloroform). Treatment of 3 with methylmagnesium iodide in diethyl ether for 1 h at room temperature gave the monosilylated triol 5 in 70% yield; m.p. $65-67^{\circ}$, $[\alpha]_D^{23} +2.8^{\circ}$ (c 2.5, chloroform); $\nu_{\text{max}}^{\text{Nujol}}$ 3333 cm⁻¹ (OH), no C=O absorption. Similarly, treatment of 4 under the same Grignard conditions afforded the corresponding monobenzylated triol 6 in 74% yield; b.p. $83^{\circ}/\sim 1.0$ torr, $[\alpha]_D^{23} -4.6^{\circ}$ (c 2.8, methanol); $\nu_{\text{max}}^{\text{film}}$ 3430 cm⁻¹ (OH), no C=O absorption. Removal of the protecting group in 5 by the use of tetrabutylammonium fluoride in tetra-

Scheme 1

hydrofuran, or in 6 by hydrogenolysis in methanol over 10% palladium-on-carbon, yielded the free triol 7 as a colorless syrup; $[\alpha]_D^{23} - 11.6^{\circ}$ (c 1.7, methanol). Thus, the key intermediate 7 can be conveniently prepared by either of these two routes; however, for largescale syntheses, that employing the tert-butyldimethylsilyl protecting group is more expensive. Treatment of 7 with 1.1 equivalents of p-toluenesulfonyl chloride in pyridine for 22 h at room temperature afforded compound 8 as white needles in 40% yield; m.p. 94-95°, $[\alpha]_{D}^{23}$ -2.2° (c 2.2, methanol). Displacement of the p-tolylsulfonyloxy group in 8 by treatment with sodium azide in boiling N,N-dimethylformamide for 24 h under reflux afforded the azide 9 as a colorless oil in 60% yield; $[\alpha]_D^{23} = 10^\circ$ (c 2.2, chloroform); $R_F = 0.43$ [t.l.c.* in 2:1 (v/v) ethyl acetate-petroleum ether]. The secondary hydroxyl group in 9 could be selectively acetylated with acetic anhydride-pyridine during 18 h at room temperature, to give 2-O-3cetyl-1-azido-1,3,4,6-tetradeoxy-5-C-methyl-L-glycero-hexitol (10) as a colorless oil in 87% yield; $[\alpha]_{D}^{23}$ -8.2° (c 3.3, chloroform); R_F 0.56 [3:2 (v/v) ethyl acetate-petroleum ether]; $v_{\text{max}}^{\text{film}}$ 3472 (OH), 2105 (N₃), and 1745 cm⁻¹ (C=O); p.m.r. data[†] (chloroform-d): δ 6.70 (2-proton, AB portion of ABX pattern, H-1,1'), 5.20-4.70 (m, 1H, H-2), 2.05 (s, 3 H, OAc), 1.75-1.35 (5 H, H-3,3', H-4,4', OH), and 1.20 (s, 6 H, 2 Me). Irradiation of a solution of 10 in benzene under nitrogen with u.v. light for 6 h at room temperature afforded 2-O-acetyl-3,4,6-trideoxy-5-C-methyl-L-glycero-hexose (11) as a colorless syrup in 51% yield; b.p. $80^{\circ}/2.0$ torr; $[\alpha]_{\rm D}^{23}$ +17.6° (c 2.5, chloroform); R_F 0.21 [1:3 (v/v) ethyl acetate—petroleum ether]; $\nu_{\rm max}^{\rm film}$ 3430 (OH) and 1745 cm⁻¹ (C=0). A salient feature of the synthesis is that the chirality of the starting material 1 is preserved at C-2 in the final product 11.

^{*}T.L.c. was performed with Silica Gel G; the term "petroleum ether" refers to the fraction having b.p. $60-80^{\circ}$.

[†]P.m.r. spectra were recorded at 60 MHz with tetramethylsilane as the internal standard.

[†]Irradiation was performed with a 450-W, Hanovia, medium-pressure, mercury-arc lamp (Cat. No. 679A-36) contained in a water-cooled, quartz immersion-well; a Vycor 7010 filter-sleeve was employed. The whole assembly was mounted in a borosilicate glass reaction-vessel.

Scheme 2

The triol 7 was also a key intermediate in the synthesis of a gem-di-C-methyl derivative resembling a carbohydrate, namely, 5,5 dimethyl-2-furanol (12, see Scheme 2). Thus, oxidation of 7 with sodium metaperiodate readily afforded 12 as a colorless liquid; R_F 0.77 (ethyl acetate); $\nu_{\rm max}^{\rm film}$ 3448 (OH) and 1739 cm⁻¹ (vw, C=O); p.m.r. data (chloroform-d): δ 5.10 (bs, 1 H, H-1), 4.20–3.10 (m, 2 H, 2 H-2), 3.40–1.70 (3 H, 2 H-3, OH), and 1.70–1.00 (6 H, CMe₂). The observation of a very weak, C=O absorption in the i.r. spectrum is indicative of the presence of a trace of the acyclic tautomer. Treatment of 12 with 6-chloropurine, diethyl azodicarboxylate, and methyldiphenylphosphine in tetrahydrofuran for 24 h at room temperature gave 6-chloro-9-(5,5-dimethylfuran-2-yl)purine (13) as colorless needles in 54% yield, m.p. 62–63°; R_F 0.52 (ethyl acetate); $\lambda_{\rm max}^{\rm EtOH}$ 263 nm ($\epsilon_{\rm mM}$ 7.30); p.m.r. data (chloroform-d): δ 8.76 and 8.32 (2 s, 1 H each, H-2 or H-8), 6.40 (1-proton apparent t, H-2'), 3.10–180 (4 H, 2 H-2', 2 H-3'), 1.47–1.35 (6 H, CMe₂). The conversion of 12 into 13 is another example of the application of the method¹⁵ recently developed for the synthesis of nucleosides by direct replacement of the anomeric hydroxyl group.

ACKNOWLEDGMENTS

The authors are grateful to Professor J. K. N. Jones for his interest and encouragement, and to the National Research Council of Canada for their financial support of this work.

REFERENCES

- 1 (a) J. S. Brimacombe, Angew Chem. Int. Ed. Engl., 10 (1971) 236-248; (b) H. Grisebach and R. Schmid, ibid., 11 (1972) 159-173; (c) W. A. Szarek, MTP Int. Rev. Sci. Org. Chem. Ser. One, 7 (1973) 85-90; (d) W. A. Szarek and D. M. Vyas, ibid., 7 (1976) 105-108.
- E. Walton, S. R. Jenkins, R. F. Nutt, M. Zimmerman, and F. W. Holly, J. Am. Chem. Soc., 88 (1966) 4524-4525; J. M. J. Tronchet, J. Tronchet, and R. Graf, J. Med. Chem., 17 (1974) 1055-1059.
- 3 C. H. Shunk, C. H. Stammer, E. A. Kaczka, E. Walton, C. F. Spencer, A. N. Wilson, J. W Richter, F. W. Holly, and K. Folkers, J. Am. Chem. Soc., 78 (1956) 1770-1771.
- 4 L. Ninet, F. Benazet, Y. Charpenite, M. Dubost, J. Florent, D. Mancy, J. Preud'Homme, T. L. Threfall, B. Vuillemin, D. E. Wright, A. Abraham, M. Cartier, N. de Chezelles, C. Godard, and J. Theilleux, C. R. Acad. Sci., Ser. C, 275 (1972) 455-458; L. Dolak, J. Antibiot., 26 (1973) 121-125.

- 5 H. Kawaguchi, T. Naito, and H. Tsukiuta, J. Antibiot. Ser. A, 18 (1965) 11-25.
- 6 H. Kawaguchi, T. Miyaki, and H. Tsukiura, J. Antibiot. Ser. A, 18 (1965) 220-222.
- H. Maehr, T. H. Williams, M. Leach, and A. Stempel, Helv. Chim. Acta, 57 (1974) 212-213;
 H. Maehr, M. Leach, T. H. Williams, W. Benz, J. F. Plount, and A. Stempel, J. Am Chem. Soc.,
 95 (1973) 8448-8449;
 H. Maehr, J. F. Blount, R. H. Evans, Jr., M. Leach, J. W. Westley,
 T. H. Williams, A. Stempel, and G. Buechi, Helv. Chim. Acta, 55 (1972) 3051-3054.
- 8 H. Maehr, M. Leach, L. Yarmchuk, and A. Stempel, J. Am. Chem. Soc., 95 (1973) 8449-8450.
- 9 R. Wax, W. Maiese, R. Weston, and J. Birnbaum, J. Antibiot., 29 (1976) 670-673.
- 10 D. L. Leland and M. P. Kotick, Carboliydr. Res., 38 (1974) C9-C11.
- B. P. Vaterlus, J. Kiss, and H. Spiegelberg, Helv. Chim. Acta, 47 (1964) 381-390; R. Kuhn and D. Weiser, Justus Liebigs Ann. Chem., 602 (1957) 208-217; O. Achmatowicz, Jr., P. Bukowski, B. Szechner, Z. Zwierzchowska, and A. Zamojski, Tetrahedron, 27 (1971) 1973-1996; O. Achmatowicz, Jr., G. Grynkiewicz, and B. Szechner, ibid., 32 (1976) 1051-1054; D. J. Ward, Ph.D. Thesis, Queen's University, Kingston, 1976.
- E. J. Corey and J. I. Shulman, J. Am. Chem. Soc., 92 (1970) 5522-5523; G. Andrews and D. A. Evans, Tetrahedron Lett., (1972) 5121-5124; B. M. Trost and M. I. Bogdanowicz, J. Am. Chem. Soc., 95 (1973) 2038-2040; B. M. Trost and M. Preckel, ibid., 95 (1973) 7862-7864; G. H. Posner and D. J. Brunelle, J. Org. Chem., 38 (1973) 2747-2756; J. P. Nallet, R. Barret, C. Aranaud, and J. Huet, Tetrahedron Lett., (1975) 1843-1844.
- 13 M. Taniguchi, K. Koga, and S. Yamada, Tetrahedron, 30 (1974) 3547-3552.
- 14 E. J. Corey and A. Venkateswarlu, J. Am. Chem. Soc., 94 (1972) 6190-6191.
- 15 W. A. Szarek, C. Depew, H. C. Jarrell, and J. K. N. Jones, J. Chem. Soc. Chem. Commun., (1975) 648-649.